Welcome to Kenny-s Blog

MQTT (MQ Telemetry Transport)

How MQTT works

An MQTT session is divided into four stages: connection, authentication, communication and termination. A client starts by creating a TCP/IP connection to the broker by using either a standard port or a custom port defined by the broker’s operators. When creating the connection, it is important to recognize that the server might continue an old session if it is provided with a reused client identity.

The standard ports are 1883 for non-encrypted communication and 8883 for encrypted communication using SSL/TLS. During the SSL/TLS handshake, the client validates the server certificate to authenticate the server. The client may also provide a client certificate to the broker during the handshake, which the broker can use to authenticate the client. While not specifically part of the MQTT specification, it has become customary for brokers to support client authentication with SSL/TLS client-side certificates.

Because the MQTT protocol aims to be a protocol for resource-constrained and IoT devices, SSL/TLS might not always be an option and, in some cases, might not be desired. In such cases, authentication is presented as a clear-text username and password that is sent by the client to the server as part of the CONNECT/CONNACK packet sequence. Some brokers, especially open brokers published on the internet, will accept anonymous clients. In such cases, the username and password are simply left blank.

MQTT is called a lightweight protocol because all its messages have a small code footprint. Each message consists of a fixed header — 2 bytes — an optional variable header, a message payload that is limited to 256 MB of information and a quality of service (QoS) level.

The three different quality of service levels determine how the content is managed by the MQTT protocol. Although higher levels of QoS are more reliable, they have more latency and bandwidth requirements, so subscribing clients can specify the highest QoS level they would like to receive.

The simplest QoS level is unacknowledged service. This QoS level uses a PUBLISH packet sequence; the publisher sends a message to the broker one time and the broker passes the message to subscribers one time. There is no mechanism in place to make sure the message has been received correctly, and the broker does not save the message. This QoS level may also be referred to as at most once, QoS0, or fire and forget.

An explanation of MQTT's QoS levels
MQTT quality of service levels

The second QoS level is acknowledged service. This QoS level uses a PUBLISH/PUBACK packet sequence between the publisher and its broker, as well as between the broker and subscribers. An acknowledgement packet verifies that content has been received and a retry mechanism will send the original content again if an acknowledgement is not received in a timely manner. This may result in the subscriber receiving multiple copies of the same message. This QoS level may also be referred to as at least once or QoS1.

The third QoS level is assured service. This QoS level delivers the message with two pairs of packets. The first pair is called PUBLISH/PUBREC, and the second pair is called PUBREL/PUBCOMP. The two pairs ensure that, regardless of the number of retries, the message will only be delivered once. This QoS level may also be referred to as exactly once or QoS2.

During the communication phase, a client can perform publish, subscribe, unsubscribe and ping operations. The publish operation sends a binary block of data — the content — to a topic that is defined by the publisher.

MQTT supports message BLOBS up to 256 MB in size. The format of the content is application-specific. Topic subscriptions are made using a SUBSCRIBE/SUBACK packet pair. Unsubscription is similarly performed using an UNSUBSCRIBE/UNSUBACK packet pair.

Topic strings form a natural topic tree with the use of a special delimiter character, the forward slash (/). A client can subscribe to — and unsubscribe from — entire branches in the topic tree with the use of special wild-card characters. There are two wild-card characters: a single-level wild-card character, the plus character (+); and a multilevel wild-card character, the hash character (#). A special topic character, the dollar character ($), excludes a topic from any root wild-card subscriptions. Typically, the $ is used to transport server-specific or system messages.

MQTT message descriptions
MQTT protocol messages

The fourth operation a client can perform during the communication phase is to ping the broker server using a PINGREQ/PINGRESP packet sequence, which roughly translates to ARE YOU ALIVE/YES I AM ALIVE. This operation has no other function than to maintain a live connection and ensure the TCP connection has not been shut down by a gateway or router.

When a publisher or subscriber wants to terminate an MQTT session, it sends a DISCONNECT message to the broker, and then closes the connection. This is called a graceful shutdown because it gives the client the ability to easily reconnect by providing its client identity and resuming where it left off.

Should the disconnect happen suddenly without time for a publisher to send a DISCONNECT message, the broker may send subscribers a message from the publisher that the broker has previously cached. The message, which is called a last will and testament, provides subscribers with instructions for what to do if the publisher dies unexpectedly.

Have something to add? Share it in the comments.

Your email address will not be published. Required fields are marked *